
Flexibility at the Roots of Eclipse
Solving the GUI Dilemma:

SWTSwing and Eclipse on Swing

Introduction to the
Generic Eclipse

Modeling System
Developing a

Graphical Modeling
Tool for Eclipse

Enabling
Integration and
Interoperability
for Eclipse
based
Development
An Introduction
to the Corona
Project

Deploying the BIRT
Viewer to JBoss
Disseminate Report
Content to an
Application Server

Subversive
The Eclipse
Plug-In for
Subversion

Dynamic Wizard Modeling with GMF
Using GMF to Build a Dynamic Wizard
Framework and a Graphical Editor

Vol.6
January 2007
Table of Contents

FEATURES

Flexibility at the Roots of Eclipse
Solving the GUI Dilemma: SWTSwing and Eclipse on

Swing

No trench in the world of Java is deeper then that

between SWT and Swing or Eclipse and Sun. Unity is

only found in the knowledge that everybody suff ers

from this argument. But how to end this almost

religious battle over the righteous GUI-toolkit?

How to bang their heads together if they only know

one point of view—for them or against them! Th e

sister projects SWTSwing and Eclipse on Swing

(EOS) achieve this trick. Th ey off er both wranglers

a conciliative solution, which combines the best of

both worlds and seemingly has only advantages for

everybody.
By Dieter Krachtus and Christopher Deckers

Introduction to the Generic Eclipse
Modeling System
Developing a Graphical Modeling Tool for Eclipse

Graphical Model-Driven Engineering (MDE) tools

have become extremely popular in the development

of applications for a large number of domains. In

many cases, however, an organization does not have

the resources or time available to develop a graphical

modeling environment from scratch using the Eclipse

Modeling Framework (EMF), Graphical Editor

Framework (GEF), or Graphical Modeling Framework

(GMF). In other situations, the complexity of the domain

limits the feasibility of using a graphical model to describe

a domain solution. Th e Generic Eclipse Modeling

System (GEMS), which is part of the Eclipse Generative

Modeling Technologies (GMT) project, helps developers

rapidly create a graphical modeling tool from a visual

language description or metamodel without any coding

29

11

Flexibility at the Roots of Eclipse
Solving the GUI Dilemma:

SWTSwing and Eclipse on Swing

Introduction to the
Generic Eclipse

Modeling System
Developing a

Graphical Modeling
Tool for Eclipse

Enabling
Integration and
Interoperability
for Eclipse
based
Development
An Introduction
to the Corona
Project

Deploying the BIRT
Viewer to JBoss
Disseminate Report
Content to an
Application Server

Subversive
The Eclipse
Plug-In for
Subversion

Dynamic Wizard Modeling with GMF
Using GMF to Build a Dynamic Wizard
Framework and a Graphical Editor

Associate Member of the Eclipse Foundation

DEPARTMENT
News & Trends
Reporting the latest announcements from

the community, Tracking new releases of

developmental tools.

05

FEATURES

Enabling Integration
and Interoperability
for Eclipse-based
Development
An Introduction to the Corona Project
Designing, developing, testing and managing

business critical applications has become

increasingly more complex. To manage this

complexity, projects are typically divided into tasks

and teams are assigned to execute them. But IT

managers also need to ensure all these diff erent

teams and team members collaborate eff ectively as

if they were a small team all working in the same

room, in the same offi ce, and on the same project.

Th e article explains why Corona is the right tool to

address this IT business problem.

By Edwin Shumacher

44

20

Vol.4
November 2006
Table of Contents

Eclipse Forum Europe
Date: 23-27 April, 2007
Venue: Rhein-Main-Hallen,
Wiesbaden, Germany

Eclipse Forum India
Date: 28-31 May, 2007
Location: Indian Institute
of Science (IISc),
Bangalore

Eclipse Forum Asia
Date: 26-29 November,
2007
Location: Singapore

in third-generation languages. GEMS automatically generates

the requisite EMF, GEF, and GMF code required to implement

the editor from a metamodel. GEMS also provides extensive

capabilities for expressing modeling guidance and performing

optimization. Finally, graphical modeling tools created with

GEMS automatically support complex capabilities, such as

remote updating and querying, template creation, styling with

Cascading Style Sheets (CSS), and model linking.
By Jules White, Douglas C. Schmidt, Andrey Nechypurenko,

Egon Wuchner

Dynamic Wizard Modeling with GMF
Using GMF to Build a Dynamic Wizard Framework and a

Graphical Editor

Developing a graphical editor is generally very complicated and

requires lot of eff ort. Th ere are few frameworks available for

writing graphical editors in Java. Th e prominent open source

frameworks are JHotDraw (which is Swing based) and GEF

(which is SWT/Jface-based). While they provide sophisticated

tools for graphical development, the painstaking work of

modeling the domain and mapping to graphical elements is left

to the user. Graphical Modeling Framework (GMF) bridges this

gap nicely. In the article, I will take you through an end-to-end

demonstration of GMF. To achieve that, fi rst we will create a

framework for meta-data driven JFace wizards. Next, we will see

how to use GMF to build a graphical editor for this framework.
By Rajkumar C Madhuram

PREVIEW

Subversive
Th e Eclipse Plug-In for Subversion
Version control systems play a central role

in soft ware engineering. In the beginning,

CVS was the poster child versioning system

of the open source community. Th en

Subversion was developed because many

felt CVS could not keep pace with changing

technologies and practices. New plugins such

as Subversive and Subclipse have appeared

in the Eclipse ecosystem to connect Eclipse

developers and Subversion. Th e article

introduces you to Subversive.

By Frank Schröder

35

Deploying the BIRT
Viewer to JBoss
Disseminate Report Content to an Application

Server
With information applications, developing

content for delivery is only a part of the

equation. Aft er report designs are complete, the

infrastructure for deploying the application has

to be addressed. Th is is equally true for BIRT

applications. In previous articles, we discussed

many of the BIRT Designer’s features, but in this

one we will cover deployment options available

to the BIRT developer, with an emphasis on

deploying the Example BIRT Viewer to the JBoss

Application Server—although the techniques

discussed in this article should apply to most

J2EE-compliant application servers.core capability

required by agile developers.

By Jason Weathersby

37

Flexibility at the Roots of Eclipse Cover Story

J a n u a r y 2 0 0 7 5www.eclipsemag.net

Introduction
Th e worst choice is to have no choice at all. Th erefore, it seems

less a curse then a blessing to have this choice with SWT and

Swing. However, the lack of time and motivation is oft en the

reason not to master both of the GUI toolkits. Th us, it is not

astonishing that the choice of the toolkit isn’t focused to the

current problem at hand but follows the taste of the developer,

which means there was no real choice from the beginning.

 Wouldn’t it be great, if one had the choice between SWT and

Swing not only at the beginning of a project but throughout

development? How about using familiar APIs to develop

Eclipse-Plug-ins, RCP-applications or a JFace/SWT GUI and

still keep the option to switch back and forth between SWT

and Swing without changes to your code?

Flexibility at the Roots of Eclipse

By Dieter Krachtus and Christopher Deckers

No trench in the world of Java is deeper then that between SWT and Swing or Eclipse and Sun. Unity is only
found in the knowledge that everybody suffers from this argument. But how to end this almost religious battle
over the righteous GUI-toolkit? How to bang their heads together if they only know one point of view—for
them or against them! The sister projects SWTSwing and Eclipse on Swing (EOS) achieve this trick. They
offer both wranglers a conciliative solution, which combines the best of both worlds and seemingly has only
advantages for everybody.

Solving the GUI Dilemma: SWTSwing and Eclipse on Swing

 SWTSwing off ers this possibility, and Eclipse on Swing
(EOS) is the proof that it even works for the most complex

SWT applications, namely Eclipse itself.

SWTSwing
 In August 2005 the SWTSwing project was started but it took

over a year until its fi rst offi cial release. Th e SWT-Snippets [3]

are used as developer tests and to document the progress of

Th is article would be of interest to Technical Managers

and Architects, Project Managers and Leads, and

Developers. Since this paper is on interoperability, an

exposure to multiple technologies (especially SWT,

Swing, Eclipse RCP and Plug-ins) is desirable.

SWTSwing

J a n u a r y 2 0 0 76

Cover Story Flexibility at the Roots of Eclipse

www.eclipsemag.net

the project. Th ese snippets are minimal examples for SWT

beginners who want to learn how to build SWT widgets.

SWTSwing can execute the majority of these snippets without

or only minor bugs by using Swing instead of SWT widgets.

 It became obvious that more complex applications and

their GUIs were not only more than the sum of their pieces

(widgets) but that they also show more bugs than would be

expected from their pieces alone when run on Swing.

 Th e sister-project, Eclipse on Swing (EOS) [5], was founded

to serve as Gold Standard [9] of a complex SWT application

for the development of SWTSwing. At the beginning EOS

was based on a branched and heavily modifi ed version of the

SWTSwing code base, solely to convince Eclipse to start up

successfully using Swing.

 However, the strategy to use both simple (Snippets) and

very complex tests (EOS) was very successful in speeding

things up. Error-prone implementations and bugs became

visible through the EOS project and led to feedback and

changes in SWTSwing.

 By now, these improvements of SWTSwing allow the

execution of other complex SWT-applications which soon

may be used in productive environments. At the moment, a

few minor bugs still spoil the overall picture, which however

may be already removed when this article is published. To get

an impression of the current status of SWTSwing, the most

recent screenshots of the popular SWT-applications Azureus
[6] and RSSOwl [7] (Figure 2 and 3) speak for themselves.

 SWT(Swing) Details
Next, let’s have a quick look at the general design of SWT

in order to understand how SWTSwing is implemented

through Swing. SWT off ers a public API which has a private

interface to the system by using a very thin native layer (see

Figure 3).

Before taking a closer look at the projects SWTSwing and EOS, it is helpful to remember the capabilities of the solutions used in
Java GUI-toolkit development.

• The Abstract Windows Toolkit (AWT) offers the developer only a meagre selection of native widgets (GUI-components like Buttons) to

build his GUI. This weakness is due to the lowest-common denominator (LCD) design concept from Sun; that is, only widgets that exist

on all Java-platforms were used for the implementation of AWT.

• In contrast, Swing is 100% implemenented in Java and consequently very portable. This advantage, since basically all widgets are

emulated, is seen by some as a weakness when it comes to performance. Similarly, the very high fl exibility of Swing was achieved at the

cost of an often criticised [1] complexity.

• SWT is conceptually similar to AWT, as it uses mainly native widgets. However, emulation is still possible and actually has to be used in

order to realize widgets that don’t exist on a certain platform. Once exclusively bundled with Eclipse, SWT is now available separately to

develop standalone applications. This process has become even more convenient by using the JFace library or the Eclipse RCP.

A more verbose overview about all three UI-toolkits, also touching things like event-handling, is detailed in an IBM developerWorks
article, SWT, Swing or AWT: Which is right for you? [2].

AWT, Swing, SWT, JFace, Eclipse RCP

Fig. 1: Azureus

Flexibility at the Roots of Eclipse Cover Story

J a n u a r y 2 0 0 7 7www.eclipsemag.net

 The actual implementation of SWT follows a general

pattern. The basic idea is that all native calls are accessed

through a single class called org.eclipse.swt.internal.<given-

platform>.OS, which is a one-to-one mapping of the related

C-functions. The functions of this very thin layer are

directly called by the classes of the SWT public API (see

Listing 1). Note that AWT also uses a native layer but

places some logic inside making it a fatter layer compared

to SWT.

 In the next step we show how SWTSwing actually

creates Swing instead of SWT-widgets. Listing 1 and 2

show the creation of a Button with SWT and SWTSwing,

respectively. The most striking difference for SWTSwing

in Listing 2 is the lack of the class org.eclipse.swt.internal.<given-

platform>.OS and thus all native dependencies. Instead the

interface org.eclipse.swt.internal.swing.CButton allows creation of

instances of the classes CButtonPush, CButtonToggle and

CButtonCheck. These classes are specializations of the

Swing-classes JButton, JToggleButton and JCheckBox.

 For each SWT widget, there exists an interface similar to

CButton and classes like CButtonPush, which implements

this interface and are derived from Swing widget classes.

The core of SWTSwing was technically most difficult to

get right, due to a fundamental conceptual difference—

event pumping is performed explicitly in SWT, whereas

Swing manages the event pump internally. To solve that

problem, SWTSwing defines two modes of functioning

called best-effort dispatching and real dispatching.

 The real dispatching is the expected SWT behavior,

where the SWT UI thread is the operating system UI

thread. In case of Swing, that means SWT controls the

automatically-managed UI thread. This is possible only if

the application or the UI Thread is launched in a certain

way, so it is not the default mode, but is recommended for

theoretical performance gains and strict compliance with

SWT’s design.

 The best-effort dispatching, which is the default mode,

does not control the Swing-UI-thread. It consists of

having two UI threads, the SWT and the Swing UI thread,

both considered as valid threads for SWT calls. The

Fig. 2: RSSOwl

Fig. 3: How SWTSwing fi ts

Listing 1

// Widget-creation in SWT for Windows:

class org.eclipse.swt.widgets.Button extends Control {
 public void setText (String string) {
 // ...
 TCHAR buffer = new TCHAR (getCodePage (), text, true);
 OS.SetWindowText (handle, buffer);
 // ...
 }
}

class org.eclipse.swt.widgets.Control {
 void createHandle () {
 // ...
 // Creation of the handle is done through the super-class
 handle = OS.CreateWindowEx (...);
 // ...
 }
}

class org.eclipse.swt.internal.win32.OS {
 // Native Methods
}

J a n u a r y 2 0 0 78

Cover Story Flexibility at the Roots of Eclipse

www.eclipsemag.net

Listing 2

// Widget-creation in SWTSwing:

class org.eclipse.swt.widgets.Button extends Control {
 Container createHandle () {
 // Creation of the handle takes place within the widget
 return (Container)CButton.Instanciator.
createInstance(this, style);
 }
 public void setText (String string) {
 // ...
 ((CButton)handle).setText(string);
 // ...
 }
}

interface org.eclipse.swt.internal.swing.CButton {
 public static class Instanciator {
 public static CButton createInstance(Button button, int
style) {
 if((style & SWT.PUSH) != 0) {
 return new CButtonPush(button, style);
 }
 if((style & (SWT.CHECK)) != 0) {
 return new CButtonCheck(button, style);
 }
 if((style & (SWT.TOGGLE)) != 0) {
 return new CButtonToggle(button, style);
 }
 // ...
 }
 }
 public void setText(String text);
}

class CButtonPush extends JButton implements CButton
{...}
class CButtonToggle extends JToggleButton implements
CButton {...}
class CButtonCheck extends JCheckBox implements
CButton {...}

assumption is that most of the code executed from the

SWT thread is some initialization work performed before

a Swing window is actually shown and that the rest of the

work is performed in response to Swing events. Under

that assumption, SWT can act on Swing directly without

the risk of an event originating from Swing.

 Advantages
One obvious advantage of the Swing implementation of SWT

is portability. Separate native libraries are not necessary,

which is considered very important by some developers.

Moreover, the number of supported platforms increases by

those who are exclusively supported by Swing.

 Th e look and feel support also plays a big part, when it

comes to ‘company branding’. With SWT one is constrained

to the native look and feel of the target platform, which in

some cases is not what a developer or its company wants.

 Another important point for some applications is an

easy and fl exible deployment. A standalone native SWT

application could be deployed with a platform-specifi c

installer, and at the same time without any code changes, as

a slender platform-independent application via Webstart.

 Th ese are only a few examples where actual problems are

solved because you keep the choice of using either SWT

or Swing at the same time without any additional work or

expense.

Eclipse on Swing
Eclipse on Swing had three motivations for its creation. One

role, as mentioned earlier, was to serve as a ‘gold standard’

for the maturing of SWTSwing. Th e separation of the

standalone code bases of SWTSwing and EOS was reverted

recently aft er a long process of feedback and improvements,

whereby now the most up-to-date SWTSwing can be used as

a basis for EOS.

 Th e EOS project provides a plug-in that hooks into the

Eclipse Preferences and allows a smooth switch between using

Swing and SWT. As shown in Figure 4, when using Swing

one can naturally select one of the various Swing Look &
Feels that already come with the plug-in.

 It is important to note, that all Views of EOS are already

usable; only a few minor problems are left that cloud the

overall picture during productive work. In Figure 4, Eclipse

runs with the Swing Windows Look & Feel, showing hardly

any recognizable visual diff erences to SWT or any other

native Windows application.

 Another positive feature is the possibility, not only to

run Eclipse itself on Swing, but in principle any application

based on the Eclipse Rich Client Platform (RCP). Figure 5
shows this capability of the EOS-Plug-in for the JAX 2006

Innovation Award [11] winner Bioclipse [12].

 Th e founders of EOS and SWTSwing currently focus all

eff orts on improving SWTSwing. Th e EOS plug-in will be

off ered in a manually installable form, until a satisfying

maturity of SWTSwing and EOS is reached. Th e plug-in can

be downloaded from the EOS project page [5].

 With the EOS plug-in the second goal of the EOS project

is pushed forward—to provide a non-invasive plug-in to

Flexibility at the Roots of Eclipse Cover Story

J a n u a r y 2 0 0 7 9www.eclipsemag.net

the Eclipse user, which can be updated from time to time

to evaluate and test the progress of SWTSwing and EOS.

It could be the key element in the Java community, which

mediates between SWT and Swing or Eclipse and Sun, by

creating unity and destroying prejudice.

 In an interview [8] Mike Milinkovich, the Executive Director

of the Eclipse Foundation said: “One of the nice things about

Eclipse is that we are not religious but pragmatic. According

to the motto: Th e people can solve their technical diffi culties

with this technology. It fi ts, it functions, it scales. It works like

a charm”.

 In the spirit of Eclipse it is now possible to embrace the

Swing technology (Figure 4 and 5)

 Th e third, and in a long-term perspective, perhaps the

most important motivation for the EOS project is probably

not obvious when described with the words—more security

and fl exibility for the future of Eclipse.

 Like a stock market share, the success of Eclipse strongly

depends on the fact that many people believe in the future of

Eclipse and rely on the promise that Eclipse will still be there

in 10 years leading the bleeding edge of technology.

EOS: Eclipse on Spare (Tyre)
Accordingly, it is interesting to examine what are the most

fragile parts of Eclipse, in case development has to be carried

on by third parties. Firstly, there are many plug-ins for Eclipse

with redundancy—meaning that free or commercial plug-

ins exist that do more or less the same and which could serve

as a replacement. Secondly, Eclipse is almost completely

written in Java, well documented, has Unit Tests, and so on.

Besides, many developers would be more then qualifi ed to

carry on the torch of Eclipse.

 Th e one and only element at the very root of Eclipse,

that doesn’t fulfi ll both criteria is SWT. Given a worst

case scenario there is neither a direct replacement exists

for SWT, nor is the development trivial due to the native

dependencies.

 Even in real-case scenarios SWTSwing/EOS could save

the day; for example, to port SWT to a new version of an

operating system. Swing could deliver a permanent or

temporary solution, until the native SWT-implementation

has reached a certain stage of maturity.

 In the end, it is also less than certain that the decision to go

the platform-dependent, native way will be the best solution

for Eclipse. At the moment Swing is no better choice for

Eclipse than SWT. In ancient times, as an aspirant for the

GUI-throne, Swing was once scolded as ‘Prince Valium’ not

without reason. However things turned for the better when

it came of age. So who can tell what improvements for Swing

a JRE 10.0 has to off er?

Summary
Accepted common sense—namely to choose the technology

that solves a problem most elegantly—is usually ignored

when it comes to Java GUI development. Rather, once the

decision for a GUI toolkit is already cast, arguments and

justifi cations for why this is the most pragmatic decision

are found aft erwards. Th e founders of SWTSwing/EOS and

Fig. 4: Eclipse on Swing Fig. 5: Bioclipse

J a n u a r y 2 0 0 710

Cover Story Flexibility at the Roots of Eclipse

www.eclipsemag.net

authors of this article stick with Orwell, who reminds us that

you usually cannot choose between good and evil but rather

the lesser of the two evils.

 Th is means two things. Firstly, there isn’t an ultimately

best toolkit—SWT and Swing both have their weaknesses.

Secondly, from now on, you are in the lucky position to choose

between one of these two evils throughout development.
 Feedback on this article can be mailed to editors@
eclipsemag.net.

Dieter Krachtus
is the founder of Eclipse on Swing (EOS)

and co-developer of SWTSwing. He works

as a developer and consultant with a main

focus on Rich Clients on the basis of Swing

or the Eclipse RCP. Currently he does a PHD

at the Interdisciplinary Center for Scientifi c

Computing (IWR) in Heidelberg.

Resources & References
 [1]
 [2] IBM developerWorks: www-128.ibm.com/developerworks/opensource/library/os-
 swingswt/?ca=dgr-lnxw01WhichGUI
 [3] SWT-Snippets: www.eclipse.org/swt/snippets/
 [4] SWTSwing: swtswing.sourceforge.net
 [5] Eclipse on Swing: eos.sourceforge.net
 [6] Azureus: azureus.sourceforge.net
 [7] RSSOwl: www.rssowl.org
 [8] The Executive Director of the Eclipse Foundation Mike Milinkovich, in Eclipse
 Magazin Vol. 8
 [9] en.wikipedia.org/wiki/Eos
[10] en.wikipedia.org/wiki/Gold_standard_%28test%29
[11] http://jax-award.de/jax_award/index_eng.php
[12] www.bioclipse.net

Christopher Deckers
is the founder of SWTSwing and co-

developer of EOS. He lives in France

and works as a Senior Java developer.

Christopher had always an interest in rich

user interfaces, tools and APIs and has his

share in many Open source projects.

Fresh, cutting-edge information on Eclipse

Content written by industry experts and peers

Published monthly, in an exclusive digital format

For daily news updates & feature stories,
log onto www.eclipsemag.net

Information Power for the Eclipse Ecosystem

Download All Issues of the Magazine for FREE.
Visit www.eclipsemag.net

Want to Sponsor/Exhibit?

Email: info@jaxindia.com
Phone: +91 80 411 24 392/3

RR

THIS YEAR’S MUST ATTEND FOR IT PROFESSIONALS
Three Conferences In One Package. Cutting-edge Sessions Delivered by
Community and Industry Luminaries.

Venue :

Date :

National Science Symposium Centre, IISc, Bangalore, India

 28-31 May 2007

Presents

Media Sponsors

YOUR RIGHT TO INFORMATION TECHNOLOGY

Platinum Sponsor Gold Sponsor

http://www.jaxindia.com

WHERE DO YOU WANT TO
MEET YOUR CUSTOMER?

S&S Media
CHAMPIONING CROSS MEDIA COMMUNICATIONS

S&S MEDIA PTE LTD

TEL: FAX:

E-MAIL:

WebSite:

Software & Support Verlag GmbH

Phone: Fax:

E-mail:

Website:

S&S Media

Phone: Fax:

E-mail:

WebSite:

S&S Media

Off:

E-mail:

WebSite:

FOUR SERVICES. ONE SOURCE.

S&S
Media

Print
(Magazine)

Custom
Events

Branded
Conference

Online

	Eclipse Magazine
	Table of Contents
	Eclipse Forum 2007
	Flexibility at the Roots of Eclipse
	JAX India 2007
	S&S Media

